Recta perpendicular al punto medio de un segmento. Mediatrices de un triángulo son las m. de cada uno de sus lados. Las tres m. concurren en un punto llamado circuncentro del triángulo. También se puede definir la mediatriz de un segmento como el lugar geométrico de los puntos del plano que equidistan de los extremos del segmento.
2.2 Bisectriz
De un ángulo, es la semirrecta que lo divide en dos ángulos iguales. También se puede definir la bisectriz de un ángulo como el lugar geométrico de los puntos del plano que equidistan (están a la misma distancia) de los lados del ángulo.
3º Circunferencia
Lugar geométrico de los puntos del plano cuya distancia a un punto fijo llamado centro es constante.. La distancia constante que separa cualquier punto de la circunferencia del centro es radio R.
4º Circunferencia que pasa por 3 puntos
Si consideramos dos puntos A y B resulta que hay infinitas circunferencias que pasan por ellos, basta considerar la mediatriz del segmento que los une y observar que las circunferencias con centro en esa mediatriz y que pasen por uno de los puntos también pasarán por el otro.
Cuando disponemos de tres puntos P, Q y R que no estén alineados, la mediatriz de PQ y la Mediatriz de QR se cortarán en un punto, ese punto es el centro de la circunferencia que pasa por P, Q y R puesto que los tres equidistan de él. Dicho con otras palabras, consiste en hallar la circunferencia circunscrita a un triángulo. El centro de dicha circunferencia se obtiene fácilmente, como intersección de las mediatrices de dos de los lados de ese triángulo. En el caso de que los tres puntos dados estén alineados el problema carece de solución
.
No hay comentarios:
Publicar un comentario